369 lines
10 KiB
Rust
369 lines
10 KiB
Rust
use std::{
|
|
collections::{BTreeMap, HashMap, HashSet, VecDeque},
|
|
fmt::Debug,
|
|
hash::Hash,
|
|
};
|
|
|
|
pub trait VertexType: Eq + Hash + Ord + Clone + Debug {}
|
|
|
|
impl<T> VertexType for T where T: Eq + Hash + Ord + Clone + Debug {}
|
|
|
|
pub struct Graph<V> {
|
|
pub vertices: HashSet<V>,
|
|
pub edges: HashMap<V, HashSet<V>>,
|
|
}
|
|
|
|
impl<V> Graph<V>
|
|
where
|
|
V: VertexType,
|
|
{
|
|
/// get the number of vertices of the graph
|
|
pub fn vertex_count(&self) -> usize {
|
|
self.vertices.len()
|
|
}
|
|
|
|
/// get the number of edges of the graph
|
|
pub fn edge_count(&self) -> usize {
|
|
self.edges.values().map(HashSet::len).sum()
|
|
}
|
|
|
|
/// check if an edge is contained in the graph
|
|
/// (only checks the provided direction)
|
|
pub fn has_edge(&self, edge: (&V, &V)) -> bool {
|
|
let (from, to) = edge;
|
|
self.edges
|
|
.get(from)
|
|
.map_or(false, |v| v.iter().any(|x| x == to))
|
|
}
|
|
|
|
/// check if an edge (a, b) and its' reverse (b, a) are both contained in the graph
|
|
pub fn has_bidirectional_edge(&self, edge: (&V, &V)) -> bool {
|
|
let (a, b) = edge;
|
|
self.has_edge((a, b)) && self.has_edge((b, a))
|
|
}
|
|
|
|
/// check if a vertex is contained in the graph
|
|
pub fn has_vertex(&self, vertex: &V) -> bool {
|
|
self.vertices.contains(vertex)
|
|
}
|
|
|
|
/// get a slice containing all neighbors of the edge
|
|
pub fn neighbors(&self, vertex: &V) -> Vec<&V> {
|
|
self.edges
|
|
.get(vertex)
|
|
.map(|es| es.iter().collect())
|
|
.unwrap_or_default()
|
|
}
|
|
|
|
/// find a path between two nodes using breadth-first-search.
|
|
/// this finds a path with the least possible edges.
|
|
pub fn find_path_bfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
|
|
let mut q = VecDeque::with_capacity(self.vertices.len());
|
|
let mut visited = HashSet::with_capacity(self.vertices.len());
|
|
|
|
q.push_back(vec![from]);
|
|
visited.insert(from);
|
|
|
|
while let Some(mut path) = q.pop_front() {
|
|
let current = path.last().unwrap();
|
|
|
|
for neighbor in self.neighbors(current) {
|
|
if neighbor == to {
|
|
return path
|
|
.into_iter()
|
|
.cloned()
|
|
.chain([to.clone()])
|
|
.collect::<Vec<_>>()
|
|
.into();
|
|
}
|
|
|
|
path.push(neighbor);
|
|
q.push_back(path.clone());
|
|
path.pop();
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// find a path between two nodes using depth-first-search.
|
|
///
|
|
/// this is short-circuiting and therefore does not guarantee
|
|
/// the found path to contain the least possible edges.
|
|
pub fn find_path_dfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
|
|
let mut q = Vec::with_capacity(self.vertices.len());
|
|
|
|
q.push(vec![from]);
|
|
|
|
while let Some(mut path) = q.pop() {
|
|
let ¤t = path.last().unwrap();
|
|
|
|
if current == to {
|
|
return path.into_iter().cloned().collect::<Vec<_>>().into();
|
|
}
|
|
|
|
for neighbor in self.neighbors(current).iter().rev() {
|
|
if path.contains(neighbor) {
|
|
continue;
|
|
}
|
|
|
|
path.push(neighbor);
|
|
q.push(path.clone());
|
|
path.pop();
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn iter(&self) -> impl Iterator<Item = &V> {
|
|
self.vertices.iter()
|
|
}
|
|
}
|
|
|
|
impl<V> IntoIterator for Graph<V>
|
|
where
|
|
V: VertexType,
|
|
{
|
|
type Item = V;
|
|
type IntoIter = IntoIter<V>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let items = self.vertices.into_iter().collect::<Vec<_>>().clone();
|
|
IntoIter { items, i: 0 }
|
|
}
|
|
}
|
|
|
|
pub struct IntoIter<V> {
|
|
items: Vec<V>,
|
|
i: usize,
|
|
}
|
|
|
|
impl<V> Iterator for IntoIter<V>
|
|
where
|
|
V: VertexType,
|
|
{
|
|
type Item = V;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
match self.items.get(self.i) {
|
|
None => None,
|
|
item => {
|
|
self.i += 1;
|
|
item.cloned()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct WeightedGraph<V> {
|
|
pub vertices: HashSet<V>,
|
|
pub edges: HashMap<V, HashSet<(u64, V)>>,
|
|
}
|
|
|
|
impl<V> WeightedGraph<V>
|
|
where
|
|
V: VertexType,
|
|
{
|
|
/// create a weighted graph from a set of vertices and weighted edges.
|
|
pub fn new<I, J>(vertices: I, edges: J) -> Self
|
|
where
|
|
I: IntoIterator<Item = V>,
|
|
J: IntoIterator<Item = (V, V, u64)>,
|
|
{
|
|
let vertices = vertices.into_iter().collect();
|
|
let mut parsed_edges = HashMap::new();
|
|
for (from, to, c) in edges {
|
|
parsed_edges
|
|
.entry(from)
|
|
.and_modify(|e: &mut HashSet<(u64, V)>| {
|
|
e.insert((c, to.clone()));
|
|
})
|
|
.or_insert_with(|| HashSet::from([(c, to)]));
|
|
}
|
|
|
|
Self {
|
|
vertices,
|
|
edges: parsed_edges,
|
|
}
|
|
}
|
|
|
|
/// get the number of vertices of the graph
|
|
pub fn vertex_count(&self) -> usize {
|
|
self.vertices.len()
|
|
}
|
|
|
|
/// get the number of edges of the graph
|
|
pub fn edge_count(&self) -> usize {
|
|
self.edges.values().map(HashSet::len).sum()
|
|
}
|
|
|
|
/// check if an edge is contained in the graph
|
|
/// (only checks the provided direction)
|
|
pub fn has_edge(&self, edge: (&V, &V)) -> bool {
|
|
let (from, to) = edge;
|
|
self.edges
|
|
.get(from)
|
|
.map_or(false, |v| v.iter().any(|(_, x)| x == to))
|
|
}
|
|
|
|
/// check if an edge (a, b) and its' reverse (b, a) are both contained in the graph
|
|
pub fn has_bidirectional_edge(&self, edge: (&V, &V)) -> bool {
|
|
let (a, b) = edge;
|
|
self.has_edge((a, b)) && self.has_edge((b, a))
|
|
}
|
|
|
|
/// check if a vertex is contained in the graph
|
|
pub fn has_vertex(&self, vertex: &V) -> bool {
|
|
self.vertices.contains(vertex)
|
|
}
|
|
|
|
/// get a slice containing all neighbors of the edge
|
|
pub fn neighbors(&self, vertex: &V) -> Vec<&(u64, V)> {
|
|
self.edges
|
|
.get(vertex)
|
|
.map(|es| es.iter().collect())
|
|
.unwrap_or_default()
|
|
}
|
|
|
|
/// find a path between two nodes using breadth-first-search.
|
|
/// this finds a path with the least possible edges.
|
|
///
|
|
/// does not take into account edge weights.
|
|
pub fn find_path_bfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
|
|
let mut q = VecDeque::with_capacity(self.vertices.len());
|
|
let mut visited = HashSet::with_capacity(self.vertices.len());
|
|
|
|
q.push_back(vec![from]);
|
|
visited.insert(from);
|
|
|
|
while let Some(mut path) = q.pop_front() {
|
|
let current = path.last().unwrap();
|
|
|
|
for (_, neighbor) in self.neighbors(current) {
|
|
if neighbor == to {
|
|
return path
|
|
.into_iter()
|
|
.cloned()
|
|
.chain([to.clone()])
|
|
.collect::<Vec<_>>()
|
|
.into();
|
|
}
|
|
|
|
path.push(neighbor);
|
|
q.push_back(path.clone());
|
|
path.pop();
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// find a path between two nodes using depth-first-search.
|
|
///
|
|
/// this is short-circuiting and therefore does not guarantee
|
|
/// the found path to contain the least possible edges.
|
|
///
|
|
/// does not take into account edge weights.
|
|
pub fn find_path_dfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
|
|
let mut q = Vec::with_capacity(self.vertices.len());
|
|
|
|
q.push(vec![from]);
|
|
|
|
while let Some(mut path) = q.pop() {
|
|
let ¤t = path.last().unwrap();
|
|
|
|
if current == to {
|
|
return path.into_iter().cloned().collect::<Vec<_>>().into();
|
|
}
|
|
|
|
for (_, neighbor) in self.neighbors(current).iter().rev() {
|
|
if path.contains(&neighbor) {
|
|
continue;
|
|
}
|
|
|
|
path.push(neighbor);
|
|
q.push(path.clone());
|
|
path.pop();
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn find_path_dijkstra(&self, from: &V, to: &V) -> Option<Vec<V>> {
|
|
use std::cmp::Reverse as Rev;
|
|
use std::collections::BinaryHeap;
|
|
|
|
let mut dist: BTreeMap<_, _> = self
|
|
.vertices
|
|
.iter()
|
|
.zip(std::iter::repeat(u64::MAX))
|
|
.collect();
|
|
|
|
let mut prev: HashMap<_, _> = self.vertices.iter().zip(std::iter::repeat(None)).collect();
|
|
let mut q: BinaryHeap<_> = self.vertices.iter().map(Rev).collect();
|
|
dist.entry(from).and_modify(|c| *c = 0);
|
|
|
|
let mut i = 0;
|
|
while !q.is_empty() {
|
|
let u = q.iter().min_by_key(|v| dist[v.0]).unwrap().0.clone();
|
|
|
|
if &u == to {
|
|
let mut s = VecDeque::new();
|
|
let mut u = Some(to.clone());
|
|
if prev[&u.clone()?].is_some() || u.clone()? == *from {
|
|
while u.is_some() {
|
|
s.push_front(u.clone()?);
|
|
u = prev[&u?].clone();
|
|
}
|
|
return Some(s.iter().cloned().collect());
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
q.retain(|v| *v != Rev(&u)); // remove u
|
|
i += 1;
|
|
if i > 5 {
|
|
panic!();
|
|
}
|
|
|
|
for (weight, v) in self.neighbors(&u) {
|
|
let alt = dist[&u] + weight;
|
|
if alt < dist[&v] {
|
|
*dist.get_mut(v)? = alt;
|
|
*prev.get_mut(v)? = Some(u.clone());
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn iter(&self) -> impl Iterator<Item = &V> {
|
|
self.vertices.iter()
|
|
}
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! graph {
|
|
( $( $v:tt : $( $e:tt ),* );* $(;)? ) => {{
|
|
let mut edges = std::collections::HashMap::new();
|
|
let mut vertices = std::collections::HashSet::new();
|
|
|
|
$(
|
|
vertices.insert($v); // insert vertex
|
|
let v_neighbors = std::collections::HashSet::from([
|
|
$( $e ),*
|
|
]);
|
|
|
|
edges.entry($v).or_insert(v_neighbors); // initialize its edges
|
|
|
|
// insert vertices with no outgoing edges
|
|
$( vertices.insert($e); )*
|
|
)*
|
|
|
|
Graph { vertices, edges }
|
|
}};
|
|
}
|