add dijkstra

This commit is contained in:
mxhagen 2025-02-21 20:43:22 +01:00
parent 57f7095c3f
commit 477cbb13f5
2 changed files with 229 additions and 7 deletions

View File

@ -1,11 +1,12 @@
use std::{
collections::{HashMap, HashSet, VecDeque},
collections::{BTreeMap, HashMap, HashSet, VecDeque},
fmt::Debug,
hash::Hash,
};
pub trait VertexType: Eq + Hash + Ord + Clone {}
pub trait VertexType: Eq + Hash + Ord + Clone + Debug {}
impl<T> VertexType for T where T: Eq + Hash + Ord + Clone {}
impl<T> VertexType for T where T: Eq + Hash + Ord + Clone + Debug {}
pub struct Graph<V> {
pub vertices: HashSet<V>,
@ -154,6 +155,196 @@ where
}
}
pub struct WeightedGraph<V> {
pub vertices: HashSet<V>,
pub edges: HashMap<V, HashSet<(u64, V)>>,
}
impl<V> WeightedGraph<V>
where
V: VertexType,
{
/// create a weighted graph from a set of vertices and weighted edges.
pub fn new<I, J>(vertices: I, edges: J) -> Self
where
I: IntoIterator<Item = V>,
J: IntoIterator<Item = (V, V, u64)>,
{
let vertices = vertices.into_iter().collect();
let mut parsed_edges = HashMap::new();
for (from, to, c) in edges {
parsed_edges
.entry(from)
.and_modify(|e: &mut HashSet<(u64, V)>| {
e.insert((c, to.clone()));
})
.or_insert_with(|| HashSet::from([(c, to)]));
}
Self {
vertices,
edges: parsed_edges,
}
}
/// get the number of vertices of the graph
pub fn vertex_count(&self) -> usize {
self.vertices.len()
}
/// get the number of edges of the graph
pub fn edge_count(&self) -> usize {
self.edges.values().map(HashSet::len).sum()
}
/// check if an edge is contained in the graph
/// (only checks the provided direction)
pub fn has_edge(&self, edge: (&V, &V)) -> bool {
let (from, to) = edge;
self.edges
.get(from)
.map_or(false, |v| v.iter().any(|(_, x)| x == to))
}
/// check if an edge (a, b) and its' reverse (b, a) are both contained in the graph
pub fn has_bidirectional_edge(&self, edge: (&V, &V)) -> bool {
let (a, b) = edge;
self.has_edge((a, b)) && self.has_edge((b, a))
}
/// check if a vertex is contained in the graph
pub fn has_vertex(&self, vertex: &V) -> bool {
self.vertices.contains(vertex)
}
/// get a slice containing all neighbors of the edge
pub fn neighbors(&self, vertex: &V) -> Vec<&(u64, V)> {
self.edges
.get(vertex)
.map(|es| es.iter().collect())
.unwrap_or_default()
}
/// find a path between two nodes using breadth-first-search.
/// this finds a path with the least possible edges.
///
/// does not take into account edge weights.
pub fn find_path_bfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
let mut q = VecDeque::with_capacity(self.vertices.len());
let mut visited = HashSet::with_capacity(self.vertices.len());
q.push_back(vec![from]);
visited.insert(from);
while let Some(mut path) = q.pop_front() {
let current = path.last().unwrap();
for (_, neighbor) in self.neighbors(current) {
if neighbor == to {
return path
.into_iter()
.cloned()
.chain([to.clone()])
.collect::<Vec<_>>()
.into();
}
path.push(neighbor);
q.push_back(path.clone());
path.pop();
}
}
None
}
/// find a path between two nodes using depth-first-search.
///
/// this is short-circuiting and therefore does not guarantee
/// the found path to contain the least possible edges.
///
/// does not take into account edge weights.
pub fn find_path_dfs(&self, from: &V, to: &V) -> Option<Vec<V>> {
let mut q = Vec::with_capacity(self.vertices.len());
q.push(vec![from]);
while let Some(mut path) = q.pop() {
let &current = path.last().unwrap();
if current == to {
return path.into_iter().cloned().collect::<Vec<_>>().into();
}
for (_, neighbor) in self.neighbors(current).iter().rev() {
if path.contains(&neighbor) {
continue;
}
path.push(neighbor);
q.push(path.clone());
path.pop();
}
}
None
}
pub fn find_path_dijkstra(&self, from: &V, to: &V) -> Option<Vec<V>> {
use std::cmp::Reverse as Rev;
use std::collections::BinaryHeap;
let mut dist: BTreeMap<_, _> = self
.vertices
.iter()
.zip(std::iter::repeat(u64::MAX))
.collect();
let mut prev: HashMap<_, _> = self.vertices.iter().zip(std::iter::repeat(None)).collect();
let mut q: BinaryHeap<_> = self.vertices.iter().map(Rev).collect();
dist.entry(from).and_modify(|c| *c = 0);
let mut i = 0;
while !q.is_empty() {
let u = q.iter().min_by_key(|v| dist[v.0]).unwrap().0.clone();
if &u == to {
let mut s = VecDeque::new();
let mut u = Some(to.clone());
if prev[&u.clone()?].is_some() || u.clone()? == *from {
while u.is_some() {
s.push_front(u.clone()?);
u = prev[&u?].clone();
}
return Some(s.iter().cloned().collect());
}
return None;
}
q.retain(|v| *v != Rev(&u)); // remove u
i += 1;
if i > 5 {
panic!();
}
for (weight, v) in self.neighbors(&u) {
let alt = dist[&u] + weight;
if alt < dist[&v] {
*dist.get_mut(v)? = alt;
*prev.get_mut(v)? = Some(u.clone());
}
}
}
None
}
pub fn iter(&self) -> impl Iterator<Item = &V> {
self.vertices.iter()
}
}
#[macro_export]
macro_rules! graph {
( $( $v:tt : $( $e:tt ),* );* $(;)? ) => {{

View File

@ -1,7 +1,7 @@
use std::collections::HashSet;
mod graph;
pub use graph::Graph;
pub use graph::{Graph, WeightedGraph};
fn main() {
// test graph:
@ -22,7 +22,6 @@ fn main() {
assert!(g.has_vertex(v), "G should contain vertex {v}");
}
// edges
for (a, neighbors) in &g.edges {
for b in neighbors {
@ -34,7 +33,6 @@ fn main() {
}
}
// dfs, bfs
let n = g.vertex_count();
let vs = g.vertices.iter().collect::<Vec<_>>();
@ -66,12 +64,45 @@ fn main() {
}
}
// iterator implementation
let all_vs = g.vertices.clone();
let seen = g.into_iter().collect::<HashSet<_>>();
assert_eq!(seen, all_vs, "Iterating G should yield all vertices");
// weighted test graph:
// ┏━5━━ b ━━2━┓
// ┃ ┃ ┃
// -> a 1 d ━━2━━ e ━━6━━ f
// ┃ ┃ ┃
// ┗━3━━ c ━━4━┛
let g = WeightedGraph::new(
['a', 'b', 'c', 'd', 'e', 'f'],
[
('a', 'b', 5),
('a', 'c', 2),
('b', 'c', 1),
('b', 'd', 2),
('c', 'b', 1),
('c', 'd', 4),
('d', 'e', 2),
('e', 'f', 6),
],
);
// disjkstra
let path = g.find_path_dijkstra(&'a', &'f');
assert!(
path.is_some(),
"Path from a to f should be found in weighted test graph using Dijkstra"
);
let path = path.unwrap();
assert_eq!(
path,
vec!['a', 'c', 'b', 'd', 'e', 'f'],
"Dijkstra should find cheapest way in weighted example graph"
);
// yay
println!("All tests passed.");